

The Lies Reliability & Maintenance Professionals Tell

www.eruditiollc.com | 843.375.8222 | Coach@eruditiollc.com

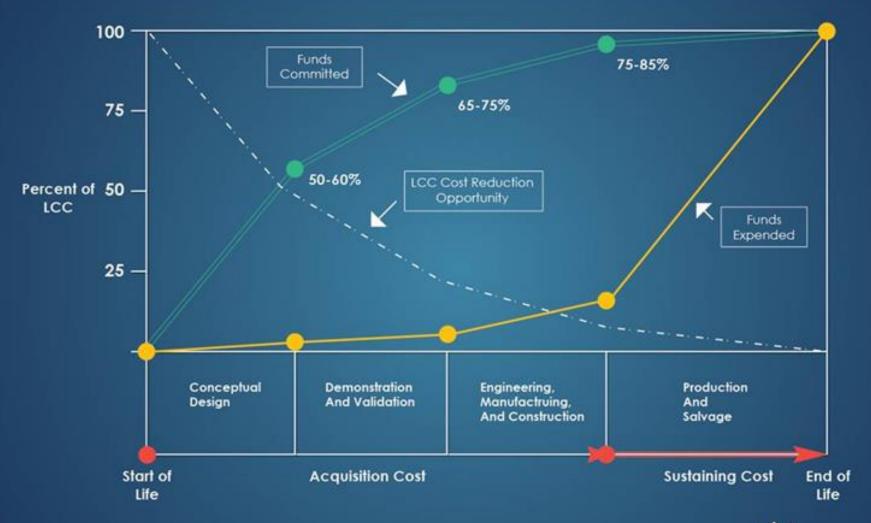
Shon Isenhour, Partner

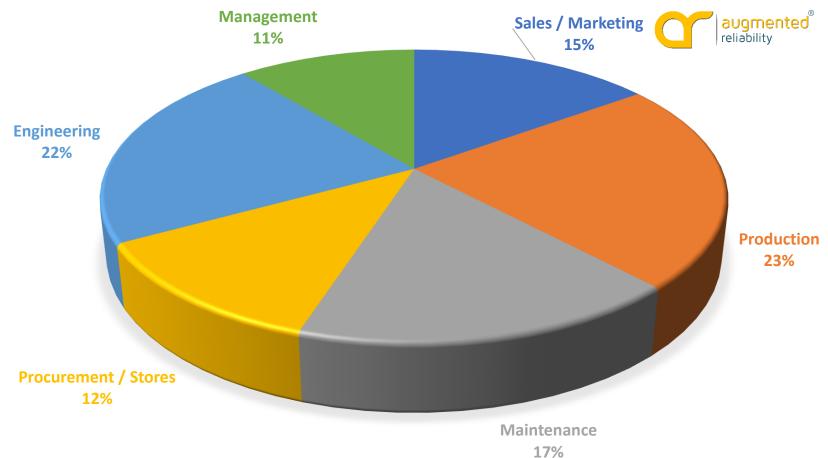
- **Shon** specializes in Business Process Management, Adult Education, Strategic Planning, Organizational Change Management, Leadership, and Reliability Engineering and has lead improvement initiatives for industries such as pharmaceuticals, metals, petrochemical, paper, and power generation, among others. Shon has been asked to speak at numerous professional conferences on these topics in the US as well as Europe, South America, and the Middle East.
- Shon is currently serving as the Past Chairman of the National Board and past Director of Education for the Society of Maintenance and Reliability Professionals and is a past committee vice chairman in the area of benchmarking. Shon also serves on the boards of other global asset management organizations including GFMAM and WPIAM. Shon is a Certified Maintenance and Reliability Professional (CMRP) and Certified Asset Management Assessor (CAMA), and has been certified by Prosci and Colorado State University as a Change Management Professional.

Title: The Lies Reliability & Maintenance Professionals Tell

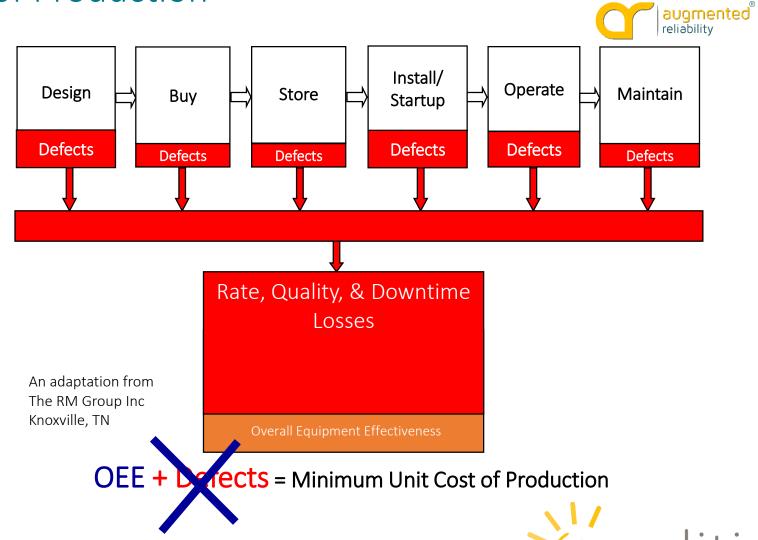
- Summary (50 words): In this session we will look at the lies, fabrications, and confusions of Reliability & Maintenance. In this fun and nerdy session we will talk about many of the common models and tools and what is just not quite right about the way they has been explained.
- Abstract (250 words):
- Let's take a fun look at the tenets of reliability and where they get a little messy. We will help the attendees better understand these concepts and where confusion can and has crept in. This will be a great session for those of you studying for an exam or just wanting to geek out a little. You will leave the session with new knowledge, interesting facts, and explainable models that you can take back to your facility and share.
- We will look at:
- Turbo Implementations?
- The criticality of criticality (both of them)
- Something funny about the P-F interval
- The funky failure curves of Reliability Centered Maintenance
- Why Root Cause Analysis is a lie
- And the fact that predictive tools can't predict
- Bring your own confusions and a willingness to participate in the dialogue as we break each of these down and toss out a few lies.

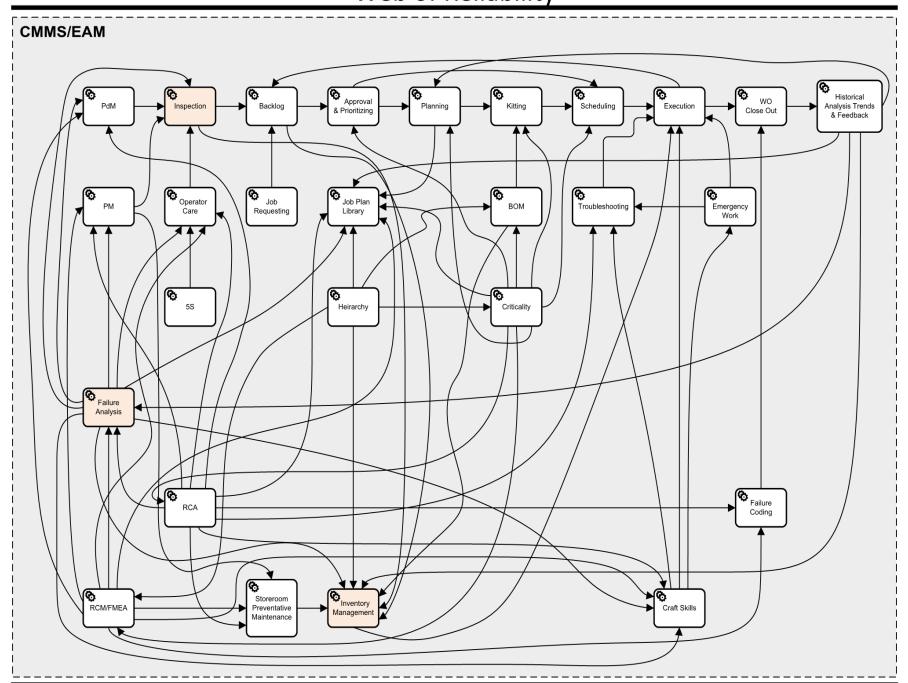
Expectations of Learning: Knowledge Perception Curve


Turbo Implementations?


LIFE CYCLE SPAN

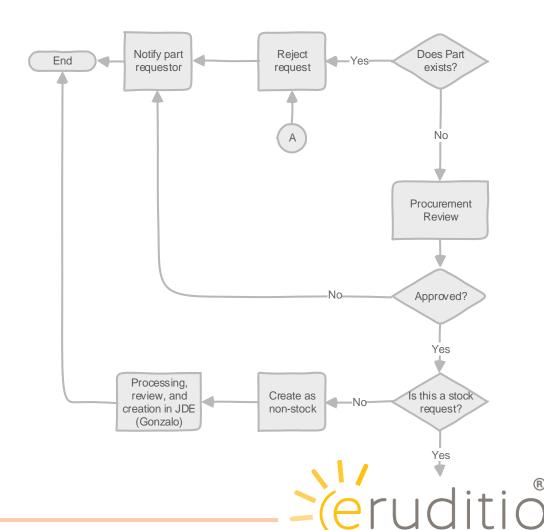
Where Do Defects Come From?




Eliminating Defects to Reduce the Unit Cost of Production

Web of Reliability

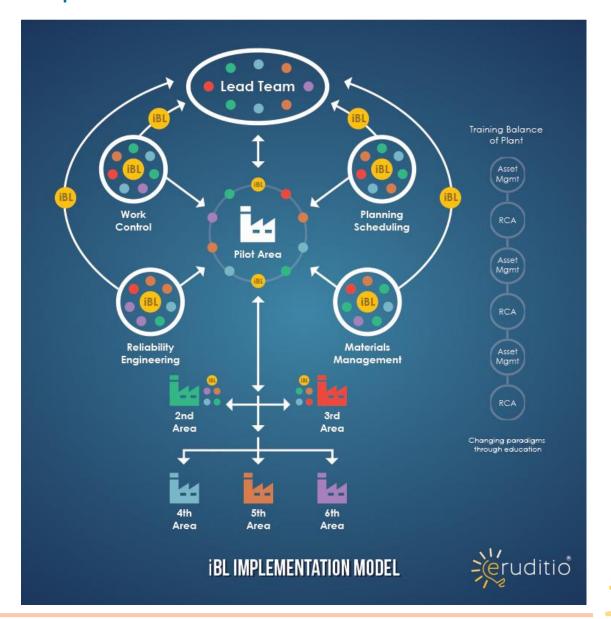
Business Process Mapping



Database

Continues

Delay



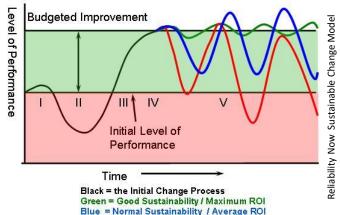
Tasks	Maint Supervisors	Maint Planner	Maint Technician	Maint Mgr	Reliability Engineer	Production Manager

Responsibility "the Doer"
Accountable "the Buck stops here
Consulted "in the Loop"
Informed "kept in the picture"

Implementation Model

Change Management

Sustainability of Your Change Figure 1



KEY FACTS

- · Soft stuff is the hard stuff!
- Risk and communication plan as part of your project plan, which is connected to the site master plan
- Leadership styles change through the project
- Metrics should link to behavioral change and should not be permanent

Red = Out of Control / Non-sustainable

High Low Directive and High Supportive Behavior S4 S4 S4 Low Directive and Low Supportive Behavior Behavior Low Supportive Behavior Behavior

DIRECTIVE BEHAVIOR

TOPIC DESCRIPTION

WHY YOU SHOULD CARE

Until you change the behavior and

attain your return on investment.

sustain the new culture, you can not

organization to make and sustain. You must have leadership, a process,

and a few very important tools.

All changes are hard for the

Establish a Sense of Urgency

Powerful Guiding Coalition

Create a Vision & Strategy

Owner Powerful Guiding Coalition

Create a Vision & Strategy

Owner Powerful The Vision & Strategy

Situational Leadership

Create a Communicate Empower Others to Vision & The Others to Vision & Vision & And Produce Strategy Vision Others to Vision

Kotter Organizational Change Model

SOURCES

ADKAR by Jeffrey Hiatt Situational Leadership 2 Ken Blanchard Leading Change John Kotter ReliabilityNow.com

The criticality of criticality (both of them)

• There are two... They are not the same. They should really never even meet.

ISO 14224 - Asset Hierarchical Structure

Industry - 1

Business Category - 2

Installation - 3

Plant/Unit - 4

Section/System - 5

Equipment/Unit - 6

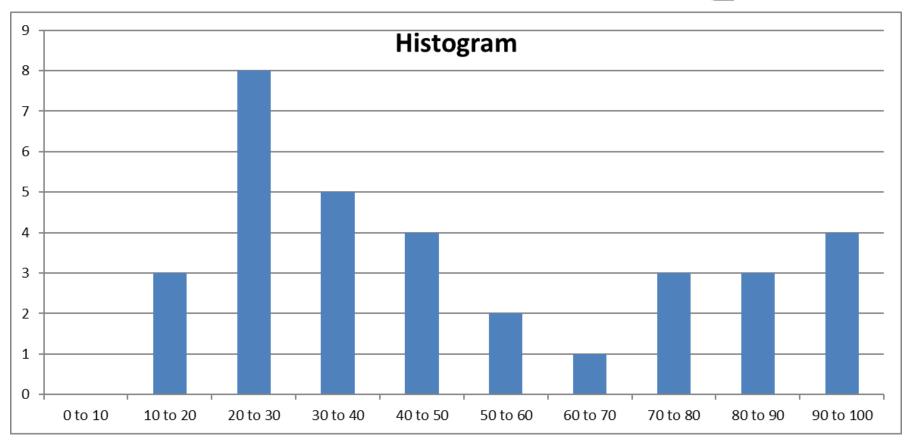
Subunit - 7

Component/Maintainable Item - 8

Part - 9

Asset Criticality

		Operations	erations Safety				Environment		Maintenanc		MRO	
Asset Number	Asset Description	Operational Severity	Personal Injury	Fire/Explosion	Safety While Maint.	Air Emissions	Chemical Spills	Single Point Failure	Maintainability	Failure Rate	Spares Lead Time	Asset Criticality
B-	3A Filter feed pump											
F3P101APM												
Р		100	12	0	24	0	30	40	25	20	0	251
B-F3P101A	3A filter feed piping											
		100	12	0	24	0	30	40	50	20	0	276
B- F3P101BPMP	3B filter feed pump											
		20	12	0	24	0	30	40	25	20	0	171

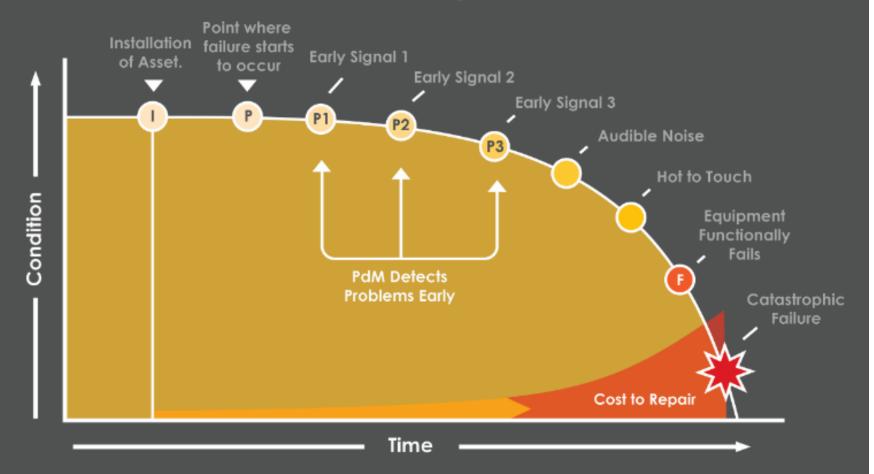

Impact of Occurrence													
Customer	Capacity	Financial Risks PM	Cost CM	RAV	<i>Image Risks</i> EH&S	Rel MTBF	iability, Availability Planned Utilization Rate		Risks Spares Lead-time	Severity of Occurrence			
10	10	10	10	10	10	10	10	10	10				
9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	Catastrophic			
9	9	9	9	9	9	9	9	9	9	Catastropino			
8	8	8	8	8	8	8	8	8	8				
7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5				
7	7	7	7	7	7	7	7	7	7	Major			
6	6	6	6	6	6	6	6	6	6	- Major			
5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5				
5	5	5	5	5	5	5	5	5	5				
4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	Minor			
3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	WIIIIOI			
3	3	3	3	3	3	3	3	3	3				
2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5				
2	2	2	2	2	2	2	2	2	2	Insignificant			
1	1	1	1	1	1	1	1	1	1	maigrimeant			
0	0	0	0	0	0	0	0	0	0				

Asset Criticality

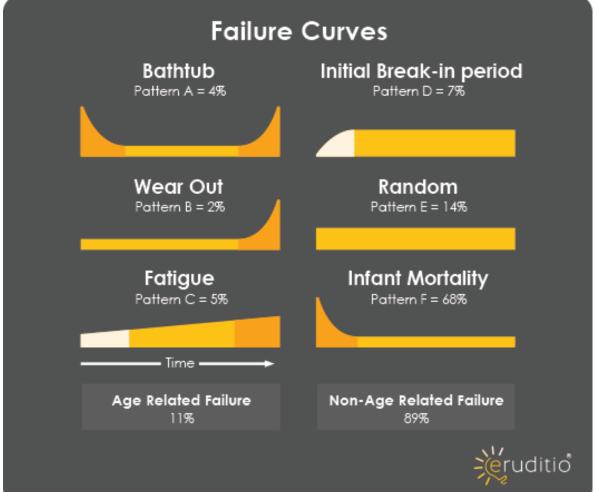
Failure Mode Effect Criticality Analysis

					F	AIL	URE MODE AND E	FFE	CTS A	NALYSIS							
Item:	n: Drill Hole					Responsibility: J. Doe					FMEA number:	123456					
Model:					Prepared by: J. Doe					-	Page:	1 of 1					
Core Team:	J. Doe (Engineering), J. Smith (Production), B. Jones (Quality)								-	FMEA Date (Orig):	:2008-01-01 Rev. 1						
Process Function	Potential	tial Potential	s	С	Potential Cause(s)/	O c	Current	D e	R		Responsibility and Target Completion Date	Action Results					
	Failure	Effect(s) of		а	Mechanis	С	Process	t	Р	Recommended			S	0	D	R	
	Mode	Failure	٧	s	m(s) of	u	Controls	е	N	Action(s)		Actions Taken	е	С	е	Р	
				s	Failure	r		С					٧	С	t	Ν	
Drill Blind Hole	Hole too deep	Break through bottom of plate	7		Improper machine set up	3	Operator training and instructions	3	63							0	
	Hole not deep enough	Incomplete thread form	5		Improper machine set up	3	Operator training and instructions	3	45							0	
			5		Broken Drill	5	None	9	225	Install Tool Detectors	J. Doe	2008-03-01	5	5	1	25	
									0							0	

0

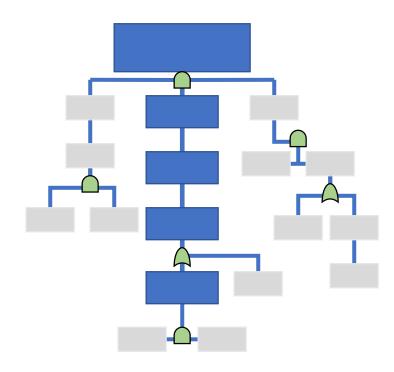

Something funny about the P-F interval

- It is failure mode specific
- It is not predictable with a limited data set
- It is not based on probability


I to P to F Curve

Why Root Cause Analysis is a lie

- No such thing as Root Cause
- There is no end
- There is not one


Problem Solving

TOPIC DESCRIPTION

CA is how you identify and understand the underlying causes of failures in your systems and equipment and mitigate or eliminate them.

WHY YOU SHOULD CARE

Without Root Cause Analysis, you will face the same losses and problems repetitively.

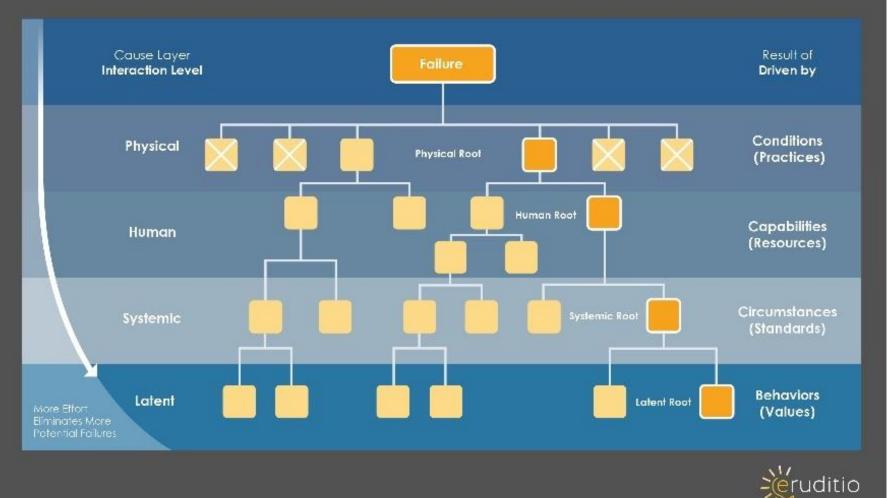
Transitional CA

KEY FACTS

- Get past the physical and human roots
- Action and Condition
- Solve for maximum return on investment
- No such thing as root cause
- Nothing saved until solution implemented and verified
- Must have a process
- Many tools that cover time, tree, transparency

And

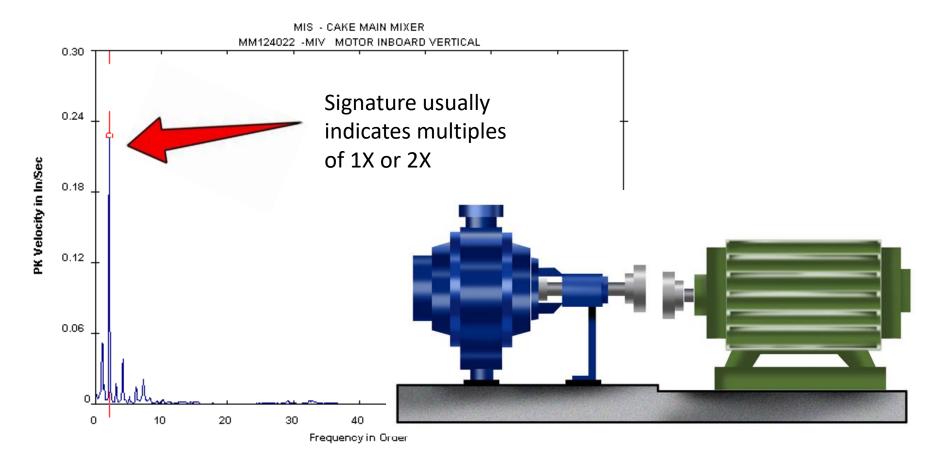
Or


SOURCES

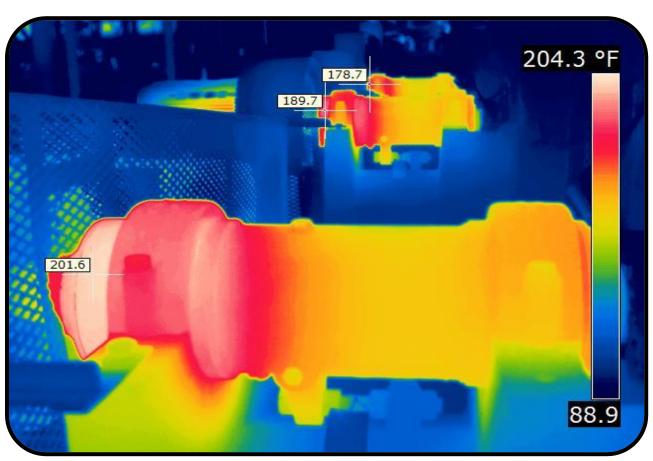
ReliabilityNow.com
T3 Methods Guide Shon Isenhour

Root Cause Analysis

Predictive Tools

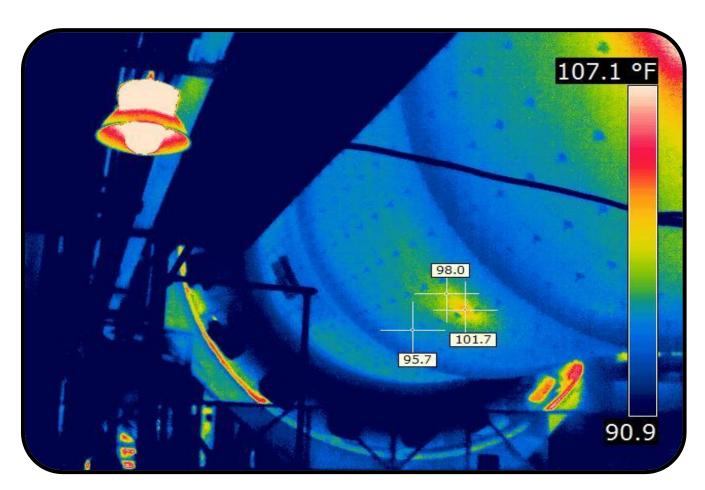

- Don't predict they identify
- Once defect is present we start the planning and scheduling process.
- Likely two or more present

Failure Mode - Misalignment

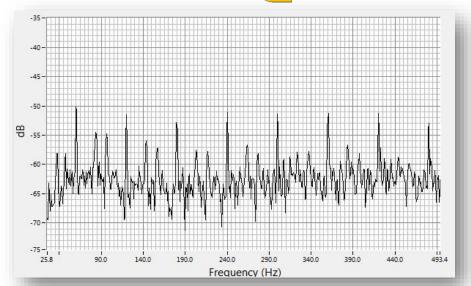


Failure Mode - Excessive Belt Tension Bended Learning

Failure Mode - Loose Connection

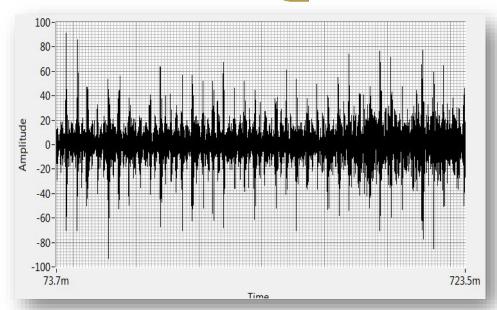


Failure Mode - Worn Liner


Electrical Inspection

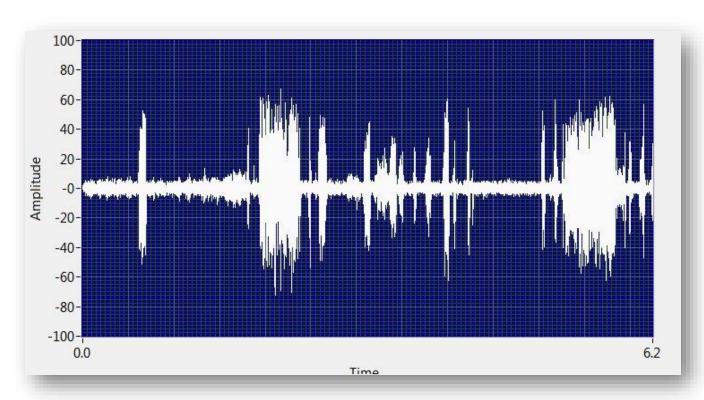
• Corona

- Ionization of air surrounding an electrical connection greater than 1000 volts
- By-product of ionization is nitric acid
- Does not produce significant heat



Electrical Inspection

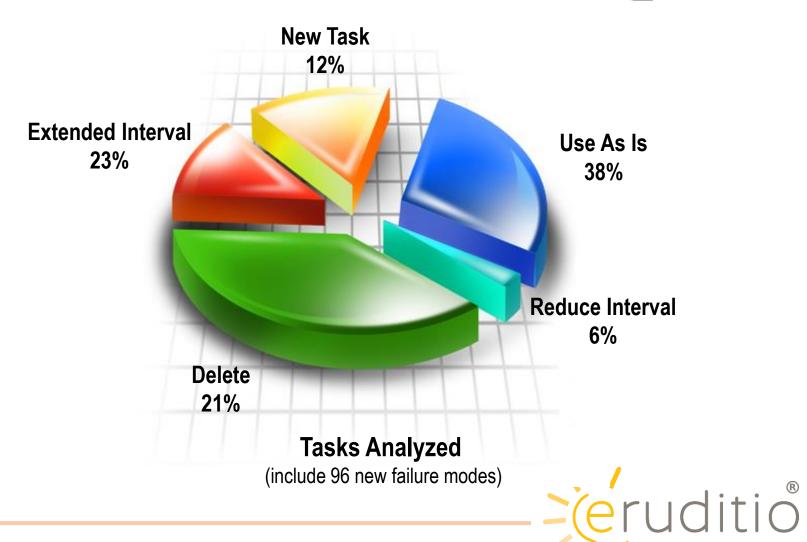
- Tracking
 - Low current pathway to ground across an insulator
 - Can be present at any voltage



Electrical Inspection

Arcing

Arcing Time Series


Bonus lie

Vendor provided PMs are effective

Vendor PM Recommendations are fine

Bonus lie

• Leadership Management Hand Grenade

Leadership vs Management

- DEFINITION: Leadership is the action of leading a group of people or an organization.
- DEFINITION: Management is the process of dealing with or controlling things or people

Questions?

Thank You

